МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ ДНР ГОУВПО «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

ПРОГРАММА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ ПО СПЕЦИАЛЬНОСТИ

Образовательный уровень «Магистр» Направление подготовки 15.04.02 «Технологические машины и оборудование» Приём 2018 года

1 ОБЩИЕ ПОЛОЖЕНИЯ

Данная программа соответствует необходимому комплексу знаний образовательной программы бакалавриата по направлению подготовки 15.03.02 «Технологические машины и оборудование». Программа содержит перечень основных вопросов по базовым дисциплинам с необходимыми ссылками на литературные источники.

Цель вступительных испытаний – выявление уровня знаний и умений, имеющихся у бакалавров и необходимых для освоения ими магистерских программ по направлению подготовки 15.03.02 «Технологические машины и оборудование». Задачами вступительных испытаний являются: оценка теоретической подготовки абитуриентов по базовой части математического и естественно-научного, а также профессионального циклов; выявление уровня и глубины практических умений и навыков; определения способности применения приобретенных знаний, умений и навыков при решении практических задач.

Требования к способностям и подготовленности абитуриентов. Для успешного усвоения образовательной программы магистра абитуриенты должны иметь базовое образование по одноименному направлению и владеть знаниями, умениями и навыками в области общетехнических наук. Обязательным условием является владение государственным языком.

Характеристика содержания программы. Программа вступительных испытаний охватывает круг вопросов, которые в совокупности характеризуют требования к знаниям и умениям человека, желающего учиться в Донецком национальном техническом университете с целью получения образовательного уровня «магистр» по направлению подготовки 15.03.02 «Технологические машины и оборудование».

Выпускники бакалавриата по соответствующему направлению подготовки проходят вступительные испытания по курсам: «Теоретическая механика», «Сопротивление материалов», «Детали машин», «Взаимозаменяемость, стандартизация и технические измерения».

2 СОДЕРЖАНИЕ ЗАДАНИЙ ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ, ПЕРЕЧЕНЬ ТЕМ И ВОПРОСОВ, НЕОБХОДИМЫХ ДЛЯ ЕГО ВЫПОЛНЕНИЯ

1. По курсу «Теоретическая механика»

- Геометрический и аналитический способы сложения сил.
- Моменты сил относительно точки и оси. Теория пар сил. Алгебраический и векторный момент силы относительно точки. Момент силы относительно оси.
- Зависимость между моментами силы относительно оси и точки на этой оси. Пара сил. Алгебраический и векторный моменты пары сил.
- Теорема о параллельном переносе силы. Сведение произвольной системы сил к центру, отдельные случаи. Условия равновесия различных систем сил.
- Трения скольжения в покое и при движении. Законы сухого трения, угол и конус трения. Трение качения и его законы.
- Кинематика простых движений. Поступательное движение тела и его свойства.
- Вращательное движение тела вокруг неподвижной оси. Определение кинематических характеристик движения тела и его точек.
- Уравнения движения и его свойства. Методы определения скорости точек плоских фигур. Теорема о сложении ускорений.
- Равновесие произвольной системы сил на плоскости и пространстве.
- Кинематическое исследование движения материальной точки и тела.

- Относительное, переносное и абсолютное движения. Теорема о сложении скоростей. Теорема Кориолиса.
- Сложение поступательных движений. Сложение мгновенных вращений тела вокруг пересекающихся и параллельных осей. Пара вращений.
- Дифференциальные уравнения движения материальной точки и их интегрирование.
- Масса системы и центр масс. Моменты инерции тел относительно осей и примеры их определения.
- Теоремы о движении центра масс, об изменении количества движения, об изменении кинетического момента относительно центра и оси. Законы сохранения. Дифференциальное уравнение вращения тела вокруг неподвижной оси. Теоремы об изменении кинетической энергии материальной точки и системы. Понятие о силовом поле и потенциальной энергии.
- Главный вектор и момент сил инерции. Их определения.
- Возможные перемещения материальной точки и системы. Число степеней свободы системы
- Принцип возможных перемещений и общее уравнение динамики.
- Обобщенные координаты и скорости. Обобщенные силы и методы их определения.

2. По курсу «Сопротивление материалов»

- Растяжение и сжатие. Внутренние силовые факторы и их вычисление методом сечений. Напряжения в поперечных сечениях стержней. Закон Гука, вычисление деформаций и перемешений.
- Механические характеристики материалов. Диаграмма растяжения и ее основные параметры: границы упругости, текучести, пропорциональности, прочности. Упругие и пластические деформации. Работа и потенциальная энергия.
- Напряженно-деформированное состояние. Линейное и плоское состояние. Напряжения на наклонных плоскостях в случае линейного напряженного состояния. Нормальные и касательные напряжения. Наибольшие напряжения и направления сечений с максимальными напряжениями.
- Обобщенный закон Гука. Теории прочности. Теория относительных деформаций, теория касательных напряжений и энергетическая теория.
- Геометрические характеристики поперечных сечений. Статические моменты и моменты инерции. Центр тяжести. Моменты инерции простых фигур: круга, прямоугольника и треугольника.
- Закон Гука в случае чистого сдвига. Напряжение сдвига, которое допускается по разным теориям прочности.
- Кручение круглых стержней. Внутренние силовые факторы и их эпюры. Расчетные формулы напряжений и углов закручивания.
- Расчет вала на прочность и жесткость. Валы круглого поперечного сечения: сплошные, полые и трубчатые. Общее напряженно-деформированное состояние круглых валов.
- Кручение тонкостенных закрытых и открытых профилей некруглых стержней.
- Изгиб. Определение изгиба неплоского, косого и поперечного плоского изгиба. Виды опор и реакций на них. Внутренние силовые факторы при изгибе и эпюры внутренних факторов при нагружении сосредоточенными и распределенными силами.
- Нормальные напряжения в случае изгиба и расчет балок на прочность. Момент сопротивления поперечного сечения балок круглых, прямоугольных и двутавровых.
- Касательные напряжения в балках и их распределение в поперечных сечениях балок прямоугольных, круглых и двутавровых.
- Касательные напряжения при изгибе тонкостенных открытых и закрытых профилей.
- Дифференциальное уравнение изогнутой оси балки, его решение и условия вычисления постоянных интегрирований. Вычисление перемещений балки консольной и балки двухопорной.

- Метод начальных параметров в поперечном изгибе. Учет произвольных нагрузок. Примеры расчета балок на жесткость. Дифференциальное уравнение изогнутой оси балки четвертого порядка.
- Колебания систем с одной степенью свободы. Вычисление частоты собственных колебаний. Расчеты одномассовых систем на собственные колебания. Вынужденные колебания систем с одной степенью свободы.

3. По курсу «Детали машин»

- Нагрузка, действующая на детали машин. Режимы нагрузки. Изменение напряжений во времени. Граница усталости. Допустимые напряжения.
- Механические передачи: назначение и классификация. Основные соотношения для кинематических параметров и параметров нагрузки.
- Зубчатые передачи. Общая характеристика и классификация. Параметры эвольвентного зацепления. Зубчатые зацепления со смещенным исходным контуром.
- Точность зубчатых передач. Конструкции зубчатых колес.
- Ременные передачи. Характеристика и классификация. Кинематика. Силы и напряжения в ветвях ремня. Расчет плоскоременной передач на тяговую способность и долговечность. Особенности расчета клиноременных передач.
- Цепные передачи. Общие сведения и классификация. Основные расчетные параметры. Критерии работоспособности и расчеты на прочность.
- Материалы, применяемые для изготовления валов. Характеристика критерии работоспособности. Выбор расчетных нагрузок. Составление расчетных схем.
- Определение запасов прочности, допустимых напряжений.
- Расчет валов на статическую прочность, усталостную прочность и жесткость.
- Резьбовые соединения. Общая характеристика. Крепежные резьбы и их параметры.
- Элементы теории винтовой пары. Расчеты на прочность резьбовых соединений при различных случаях нагружения.
- Шпоночные и зубчатые (шлицевые) соединения. Общая характеристика. Расчет ненапряженных и напряженных шпоночных соединений. Расчет зубчатых (шлицевых) соединений.
- Сварные соединения. Общая характеристика. Типы сварных соединений и сварных швов. Расчет сварных соединений на прочность.

4. По курсу «Взаимозаменяемость стандартизация и технические измерения»

- Системы допусков и посадок для элементов цилиндрических и плоских соединений.
- Обоснование использования посадок с зазором, переходных и посадок с натягом.
- Обоснование посадок подшипников качения.
- Нормирование отклонений формы и расположения поверхностей детали и изображение их на чертежах.
- Нормирование и изображения на чертежах показателей шероховатости и волнистости.
- Основы теории размерных цепей. Расчет методом тах-тіп. Особенности теоретиковероятностного метода расчета размерных цепей
- Обоснование точности зубчатых передач. Особенности контроля зубчатых передач
- Основные параметры, допуски и посадки резьбы.
- Обоснование выбора универсальных измерительных средств.

3 КРИТЕРИИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТОВ ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ

Максимальный балл по вступительному испытанию равен 100, минимальный проходной балл – 60.

При проверке экзаменационных работ за ответы на каждый вопрос выставляется дифференциальная оценка по следующим критериям.

Уровень 1. Две задачи. Правильный ответ на вопрос соответствует 10 баллам, которые начисляются следующим образом:

а) задача 1 (баллы суммируются на основании таблицы)

приведена расчетная формула	4 балла
рассчитаны значения величин	4 балла
отсутствуют арифметические ошибки и ошибки размерностей, ука-	2 балла
заны наименования рассчитанных величин	

б) задача 2 (баллы выбираются на основании таблицы)

полный ответ с подробными пояснениями	10 баллов
неполный ответ с минимальными пояснениями	6 баллов
отсутствие ответа	0 баллов

Максимальная оценка за правильные ответы на вопросы 1-го уровня: 20 баллов.

Уровень 2. Три задачи.

Правильный ответ на вопрос соответствует 18 баллам, которые начисляются следующим образом:

а) задача 1 (баллы выбираются на основании таблицы)

эпюра построена правильно, величины рассчитаны без ошибок	18 баллов
допущены незначительные ошибки в построении эпюр или расчёте	16 баллов
величин	
эпюра построена правильно, отсутствует обоснование построения	15 баллов
или не определены все активные силовые факторы и реакции	
эпюра построена с незначительными ошибками	10 баллов
отсутствует эпюра	0 баллов

б) задача 2 (баллы выбираются на основании таблицы)

приведены расчетные формулы, величины рассчитаны без ошибок,	18 баллов
имеется обоснование полученного решения	
приведены расчетные формулы, допущены ошибки размерностей	16 баллов
или не указаны наименования рассчитанных величин	
приведены расчетные формулы, допущены арифметические ошибки	15 баллов
или отсутствует обоснование полученного решения	
допущены ошибки в выводе расчетных формул, расчеты неполные	10 баллов
отсутствуют расчетные формулы	0 баллов

в) задача 3 (баллы выбираются на основании таблицы)

приведена расчетная схема и расчетные формулы, величины рассчи-	18 баллов
таны без ошибок, имеется обоснование полученного решения	
приведена расчетная схема и расчетные формулы, допущены ошибки	16 баллов
размерностей или не указаны наименования рассчитанных величин	
приведена расчетная схема и расчетные формулы, допущены ариф-	15 баллов
метические ошибки или отсутствует обоснование полученного ре-	
шения	
приведена расчетная схема, допущены ошибки в выводе расчетных	10 баллов
формул, расчеты неполные	
приведена расчетная схема, расчетная формула выбрана неверно	4 балла
отсутствует расчетная схема	0 баллов

Отсутствие ответа – 0 баллов.

Максимальная оценка за правильные ответы на вопросы 2-го уровня: 54 балла.

Уровень 3. Одна задача. Правильный ответ на вопрос соответствует 26 баллам, которые начисляются следующим образом:

а) задача 1 (баллы выбираются на основании таблицы)

26 баллов
23 балла
22 балла
20 баллов
10 баллов
5 баллов
0 баллов

Отсутствие ответа – 0 баллов.

Максимальная оценка за правильные ответы на вопросы 3-го уровня: 26 баллов.

4 ЛИТЕРАТУРА

По курсу «Теоретическая механика»

- 1. Павловский, М.А. Теоретическая механика. Статика. Кинематика: учебник для втузов / М.А. Павловский, Л.Ю. Акинфиева, О.Ф. Бойчук; под ред. М.А. Павловского. К.: Выща школа. Голов. изд-во, 1989. 351 с.
- 2. Павловский, М.А. Теоретическая механика. Динамика: учебник для втузов / М.А. Павловский, Л.Ю. Акинфиева, О.Ф. Бойчук; под общ. ред. М.А. Павловского. К.: Вища школа, $1990.-479~\rm c.$
- 3. Никитин, Н.Н. Курс теоретической механики: учебник для вузов / Н.Н. Никитин. 5-е изд., перераб. и доп. и последующие издания. М.: Высшая школа, 1990. 606 с.
- 4. Тарг, С.М. Краткий курс теоретической механики: учебник для втузов / С.М. Тарг. 10-е изд., перераб. и доп. и последующие издания. М.: Высшая школа, 1986. 415 с.
- 5. Яблонский, А.А. Курс теории колебаний: учебное пособие для вузов / А.А. Яблонский, С.С. Норейко. 3-е изд., испр. и доп. и последующие издания. М.: Высшая школа, 1975. 248 с.
- 6. Сборник заданий для курсовых работ по теоретической механике: для втузов]/ А.А. Яблонский, С.С. Норейко, С.А. Вольфсон и др.; под ред. А.А. Яблонского. 3-е изд., испр. и последующие издания. М.: Высшая школа, 1978. 388 с.
- 7. Мещерский, И.В. Сборник задач по теоретической механике: учебное пособие для втузов / И.В. Мещерский; под ред. Н.В. Бутенина и др. Изд. 35-е, перераб. и последующие издания. М.: Наука, 1981.-480 с.

По курсу «Сопротивление материалов»

- 1. Писаренко, Г.С. Сопротивление материалов: учебник для вузов / Г.С. Писаренко, В.А. Агарев, А.Л. Квитка и др.; Под ред. Г.С. Писаренко. 5-е изд., перераб. и доп. К.: Вища школа, 1986. -775 с.
- 2. Беляев, Н.М. Сопротивление материалов: учебник для вузов / Н.М. Беляев. 15-е изд., перераб. и последующие издания. М.: Наука, 1976. 607 с.

- 3. Биргер, И.А. Сопротивление материалов: учебное пособие для машиностроительных и авиационных вузов / И.А. Биргер, Р.Р. Мавлютов. М.: Наука, 1986. 560 с.
- 4. Феодосьев, В.И. Сопротивление материалов: учебник для втузов / В.И. Феодосьев. 9-е изд., перераб. М.: Наука, 1986. 512 с.
- 5. Шевченко, Ф.Л. Механика упругих деформируемых систем: учебное пособие для вузов. Ч. 1. Напряженно-деформированное состояние стержней / Ф.Л. Шевченко. Донецк: ДонНТУ, $2006.-293~\rm c.$
- 6. Шевченко, Ф.Л. Механика упругих деформируемых систем: учебное пособие для вузов. Ч. 2. Сложное напряженное состояние / Ф.Л. Шевченко. Донецк: ДонНТУ, 2007. 306 с.
- 7. Шевченко, Ф.Л. Динамика упругих стержневых систем. Донецк: ООО «Лебедь», $1999.-267~\mathrm{c}$.
- 8. Шевченко, Ф.Л. Задачи по сопротивлению материалов: учебное пособие для вузов / Ф.Л. Шевченко, С.Н. Царенко; ДонНТУ. Донецк: ДонНТУ, 2009. 343 с.

По курсу «Детали машин»

- 1. Нечепаєв, В.Г. Деталі машин: методи розрахунків, задачі та проблемні завдання, автоматизоване проектування: навч. посібник для студентів ВНЗ / В.Г. Нечепаєв, В.П. Блескун, В.П. Оніщенко та ін.; під заг. ред. В.Г. Нечепаєва; Донец. нац. техн. ун-т. Донецьк, 2012. 404 с.
- 2. Методичні вказівки до виконання курсового проекту з деталей машин. Розділ 1; 2; 3; 4. Донецьк, ДонНТУ, 2011.
 - 3. Решетов, Д.Н. Детали машин / Д.Н. Решетов. М., Машиностроение, 1989. 496 с.
- 4. Иванов, М.Н. Детали машин: Учебник для вузов / М.Н. Иванов. 5-е изд. перераб. и последующие издания. М.: Высшая школа, 2002. 408 с.
- 5. Заблонский, К.И. Детали маши: Учебник для студ. машиностроит. спец. вузов. / К.И. Заблонский. К.: Вища школа, 1985. 518 с.
- 6. Устиненко, В.Л. Основы проектирования деталей машин. Учебное пособие для вузов / В.Л. Устиненко, Н.Ф. Киркач, Р.А. Баласанян; ред Н.И. Юркевич Харьков: Вища школа. Издво при Харьк. ун-те,1983. 181 с.
- 7. Киркач, Н.Ф. Расчет и проектирование деталей машин: учебное пособие для втузов: в 2 ч. Ч. 1 / Н.Ф. Киркач, Р.А. Баласанян. 2-е изд., перераб. и доп. Харьков: Вища школа. Изд-во при Харьк. гос. ун-те, 1987. 134 с.
- 8. Киркач, Н.Ф. Расчет и проектирование деталей машин: учебное пособие для втузов: в 2 ч. Ч. 2 / Н.Ф. Киркач, Р.А. Баласанян. 2-е изд., перераб. и доп. Харьков: Вища школа. Изд-во при Харьк. гос. ун-те, 1988.-140 с.
- 9. Шелофаст, В.В. Основы проектирования машин. Примеры решения задач / В.В. Шелофаст, Т.Б. Чугунова. М. Изд-во АПН., 2004. 240 с.
- 10. Дунаев, П.Ф. Конструирование узлов и деталей машин / П.Ф. Дунаев, О.П. Леликов. М.: Высшая школа, 1985.-416 с.
- 11. Проектирование механических передач: учебно-справочное пособие по курсовому проектированию механических передач / С.А. Чернавский, Г.А. Снесарев, Б.С. Козинцов; под ред. С.А. Чернавского. 5-е изд., перераб. и доп. и последующие издания. М.: Машиностроение, 1984. 558 с.

По курсу «Взаимозаменяемость стандартизация и технические измерения»

- 1. Афанасьев, А.А. Взаимозаменяемость: учебник для вузов / А.А. Афанасьев, А.А. Погонин. М.: ИЦ «Академия», 2010. 352 с.
- 2. Дунин-Барковский, И.В. Взаимозаменяемость, стандартизация и технические измерения: учебник для машиностроит. спец. вузов / И.В. Дунин-Барковский. М.: Изд-во стандартов, 1987. 349 с.
- 3. Карпенко, В.А. Взаимозаменяемость, стандартизация и технические измерения: учебное пособие для втузов / В.А. Карпенко, Н.А. Волошина, С.П. Волков; Севастоп. нац. техн. ун-т. Севастополь: Изд-во СевНТУ, 2007. 372с.

- 4. Якушев, А.И. Взаимозаменяемость, стандартизация и технические измерения: учебник для вузов / А.И. Якушев, Л.Н. Воронцов, Н.М. Федотов. 6-е изд., перераб. и доп. и последующие издания. М.: Машиностроение, 1987. 350 с.
- 5. Допуски и посадки: справочник: в 2 ч. Ч. 1 / В.Д. Мягков, М.А. Палей, А.Б. Романов, В.А. Брагинский. 6-е изд., перераб. и доп. Л.: Машиностроение, Ленингр. отд-ние, 1982. 543 с.
- 6. Допуски и посадки: справочник: в 2 ч. Ч. 2 / В.Д. Мягков, М.А. Палей, А.Б. Романов, В.А. Брагинский. 6-е изд., перераб. и доп. Л.: Машиностроение, Ленингр. отд-ние, 1983. 447 с.
- 7. Методичні вказівки до лабораторного практикуму з дисципліни "Взаємозамінність, стандартизація і технічні вимірювання" / І.В. Клименко, В.О.Голдобін, Г.І.Хіценко. Донецьк: ДонНТУ, 2011. 60 с.
- 8. Методичні вказівки до виконання курсової роботи з дисципліни "Взаємозамінність, стандартизація і технічні вимірювання" (для студентів напряму "Інженерна механіка" і «Машинобудування») / І.В. Клименко, Г.І. Хіценко, В.О. Голдобін. Донецьк: ДонНТУ, 2011. 140 с.