МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ ДНР ГОУВПО «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра «Химическая технология топлива» Кафедра «Прикладная экология и охрана окружающей среды»

ПРОГРАММА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ ПО СПЕЦИАЛЬНОСТИ

Образовательный уровень «Магистр» Направление подготовки 18.04.01 «Химическая технология» Приём 2018 года

ОБЩИЕ ПОЛОЖЕНИЯ

Программа вступительных испытаний предусматривает проверку знаний по комплексу основных дисциплин, которые изучаются в высшем учебном заведении по направлению подготовки 18.03.01 «Химическая технология» (уровень бакалавриата). К этим дисциплинам относятся курсы: "Общая и неорганическая химия", "Органическая химия", "Процессы и аппараты химических производств", "Математическое моделирование и оптимизация объектов химической технологии", "Общая химическая технология"

Общая и неорганическая химия

- 1. Предмет и задачи химии. Место химии среди естественных наук.
- 2. Атомно-молекулярное учение. Постоянство состава веществ. Закон сохранения массы. Закон Авогадро и молярный объем газа.
- 3. Химический элемент. Химические соединения. Валентность и степень окисления.
- 4. Периодический закон. Зависимость свойств элементов от положения в периодической системе.
 - 5. Расчеты по химическим уравнениям.
 - 6. Химическая связь. Виды химической связи.
- 7. Растворы. Способы выражения концентрации растворов. Электролиты и неэлектролиты.
- 8. Классификация химических реакций. Химическое равновесие. Принцип Ле Шателье.
- 9. Классы неорганических соединений. Взаимосвязь между классами неорганических соединений.
- 10. Общая характеристика металлов, взаимодействие с водой, растворами кислот, щелочей.
 - 11. Общая характеристика неметаллов, основные химические свойства.
- 12. Углерод, положение в периодической системе, строение атома, аллотропные формы. Химические свойства углерода. Превращение карбонатов в природе.

Органическая химия

- 1. Теория химического строения органических соединений А.М.Бутлерова.
- 2. Классификация органических соединений.
- 3. Насыщенные углеводороды: номенклатура, физические и химические свойства. Изомерия.
- 4. Этиленовые углеводороды: двойная связь, химические свойства, применение в промышленности.
- 5. Ацетилен, особенности его строения, тройная связь. Способы получения, химические свойства и применение.

- 6. Ароматические углеводороды: химические свойства, производство и применение. Электронное строение бензола.
- 7. Природные источники углеводородов (нефть, природный и попутные нефтяные газы, каменный уголь).
- 8. Спирты, их строение, номенклатура. Химические свойства и применение. Водородная связь.
- 9. Фенол, его строение, взаимное влияние атомов в молекуле. Применение фенола.
- 10. Альдегиды, их строение. Химические свойства. Добывание и применение муравьиного и уксусного альдегидов.
- 11. Карбоновые кислоты: строение, номенклатура, физические и химические свойства.
- 12. Взаимосвязь между углеводородами, спиртами, альдегидами и карбоновыми кислотами.
- 13. Сложные эфиры, их состав, добыча за реакцией этерификации, химические свойства.
- 14. Жиры как представители эфиров, их роль в природе, химическая переработка.
 - 15. Глюкоза, ее состав, химические свойства, роль в природе.
- 16. Крахмал, целлюлоза, их состав химические свойства, роль в природе и техническое применение.
 - 17. Аминокислоты, их состав, химические свойства.

Процессы и аппараты химических производств

- 1. Законы, лежащие в основе расчетов процессов и аппаратов. Алгоритм расчета процессов и аппаратов.
- 2. Основные законы гидростатики и его практическое использование (замер давления в аппарате, высота гидрозатвора, замер уровня жидкости в аппарате).
- 3. Уравнение Бернулли и его практическое использование для замера расхода жидкости (мерная диафрагма, труба Вентури).
- 4. Уравнение Бернулли и использование его для замера потерь давления в трубопроводах различной конфигурации.
 - 5. Потери давления в трубопроводах и химической аппаратуре.
 - 6. Выбор насоса на сеть.
- 7. Теплопроводность. Закон Фурье. Уравнение теплопроводности для одно- и многослойных плоских и цилиндрических стенок.
- 8. Конвекция. Уравнение охлаждения Ньютона. Алгоритм определения коэффициента теплоотдачи.
- 9. Сложная теплоотдача, уравнение данного процесса. Алгоритм определения кинетических показателей.
- 10. Теплопередача. Уравнение данного процесса. Алгоритм определения показателей.

- 11. Массопередача. Равновесие и движущая сила массопередачи. Определение направления переноса вещества.
 - 12. Абсорбция. Расчет расхода поглотителя.
 - 13. Абсорбция. Уравнение рабочей линии.
 - 14. Абсорбция. Равновесие при абсорбции.
 - 15. Сушка. Расчет теоретической сушилки с помощью диаграммы І-Х.
 - 16. Сушка. Расчет действительной сушилки с помощью диаграммы І-Х.
- 17. Сушка. Расчет движущей силы процесса с помощью диаграммы I-X.
 - 18. Сушка. Скорость процесса и расчет его продолжительности.
- 19. Определить коэффициент массопередачи при поглощении NH_3 водой, если β_x =0,02 м/с, β_y =0,005 м/с, P=5 атм, t=20°C.
- 20. Определить диаметр и высоту насадочной части аппарата, если необходимая поверхность массопередачи $F=500 \text{ м}^2$, расход газа $V=3 \text{ м}^3/\text{c}$, действительная скорость газа -0.5 м/c, насадка кольца Рашига $50 \times 50 \times 5$.
- 21. Определить необходимую поверхность массопередачи при поглощении NH_3 раствором H_2SO_4 . Количество газа-носителя $V=20~\text{m}^3/\text{c}$, начальная концентрация аммиака в газе 5% объем., степень поглощения 80%, коэффициент массопередачи $K_v=0,002~\text{m/c}$.
- 22. Определить режим движения смеси газов, содержащей 25% H_2 и 75% N_2 в % мольных, в количестве V=36 м³/с по каналу с квадратным сечением, сторона квадрата а =0,1м.
- 23. Определить эквивалентный диаметр межтрубного пространства кожухотрубчатого теплообменника без поперечных перегородок. Внутренний диаметр кожуха D=600 мм, наружный диаметр труб $d_{\rm H}=38$ мм, количество труб n=121.
- 24. Температура воздуха по сухому термометру 50°С, по мокрому термометру 30°С. Определить все характеристики воздуха.
- 25. Горячий теплоноситель насыщенный водяной пар (P_{u36} =3кгс/см²), холодный теплоноситель вода с $t_{нач}$ =30°C. Определить конечную температуру воды, если среднеарифметическая разность температур в аппарате Δt_{cp} =100°C.
- 26. Определить потери давления на трение при движении газа аммиака по каналу длиной 100 м с прямоугольным сечением 0.25×0.7 м. Расход газа при нормальных условиях V=30000 м³/ч. Вязкость газа μ =0.013*10⁻³Па*c.
- 27. Показания психометра: $t_{\text{сух}}$ =70°C; $t_{\text{мокр}}$ =30°C. Определить все характеристики воздуха.
- 28. В теплообменник поступает вода в количестве 6 т/час с $t_{\text{нач}}$ =30°С и насыщенный водяной пар с $P_{\text{изб}}$ =3кгс/см 2 в количестве 1 т/час. Потери тепла составляют 5% от $Q_{\text{прих}}$. Определить конечную температуру воды, если конденсат пара выходит из аппарата при $t_{\text{конл}}$.
- 29. Определить количество конденсирующегося водяного пара давлением Р=0,3 Мпа, проходящего по изолированному паропроводу длиной

90м, диаметром d=49*2 мм. Материал изоляции – асбест. Толщина изоляции – 10 мм. Температура наружной поверхности изоляции - 50°С. Температуру внутренней стенки трубы принять равной температуре пара. Материал трубы – сталь.

30. Определить напор насоса, подающего жидкость плотностью ρ =800 кг/м³ по трубе диаметром d= 0,3 м на высоту H=10 м. Длина трубопровода l=20 м. Расход жидкости V=50 м³/ч. Вязкость жидкости μ =0,7*10⁻³Па*с. Трубы гладкие.

Математическое моделирование и оптимизация объектов химической технологии

- 1. Понятия "модель" и "моделирование". Классификация моделей. Роль математического моделирования в изучении химико-технологических процессов и объектов химической технологии.
- 2. Математическое моделирование химико-технологических процессов, характеристика его основных этапов и алгоритм разработки математической модели.
- 3. Условия однозначности. Их классификация и необходимость применения. Использование условий однозначности при разработке математической модели на примере теплообменного апарата.
- 4. Идеальные гидродинамические структуры потоков. Использование в математическом моделировании, математическое описание идеальных структур, кривые отклика.
- 5. Разработать математическую модель аппарата для проведения химической реакции в изотермических условиях (стационарный режим, РИВ): A->B(K1), B->C(K2).
- 6. Разработать математическую модель каскада РИС для проведения химической реакции в изотермических условиях (стационарный режим): A->B(K1), B->A(K2),
 - 7. $B \rightarrow C(K3)$.
- 8. Разработать математическую модель теплообменника «труба в трубе» при противоточном движении теплоносителей (стационарный режим).
- 9. Разработать математическую модель парового подогревателя (стационарный режим).
- 10. Разработать математическую модель насадочного абсорбера (стационарный режим).
- 11. Разработать математическую модель тарельчатого абсорбера (стационарный режим).

Общая химическая технология

- 1. Технологические критерии оценки функционирования химического производства
- 2. Изменение концентрации вещества в ходе химического превращения
- 3. Практические приемы увеличения равновесной степени превращения
- 4. Кинетическое уравнение скорости для простого необратимого гомогенного процесса
- 5. Лимитирующая стадия гетерогенного процесса. Методы определения лимитирующей стадии.
- 6. Математическая модель политермического периодического реактора идеального смешения РИС-П-Пт
- 7. Математическая модель адиабатического периодического реактора идеального смешения РИС-П-А
- 8. Математическое описание политермического реактора идеального вытеснения (РИВ-Пт)
- 9. Математическое описание адиабатического реактора идеального вытеснения (РИВ-А)
- 10. Математическое описание каскада непрерывных реакторов идеального смешения (К-РИС-Н)
- 11.Определить объем РИС-H, если протекает реакция $A + B \rightarrow 2R$. Объемный расход реагентов составляет 20 л/мин, константа скорости химической реакции K = 0.38 л/моль·мин, степень превращения $X_A = 0.9$, концентрация реагентов в исходной смеси C0A = C0B = 0.2 моль/л
- 12.Определить объем РИВ, если протекает реакция $A + B \rightarrow 2R$. Объемный расход реагентов составляет 20 л/мин, константа скорости химической реакции K = 0.38 л/моль мин, степень превращения $X_A = 0.9$, концентрация реагентов в исходной смеси C0A = C0B = 0.2 моль/л
- 13.В реакторах РИС-Н и РИВ протекает простой необратимый процесс типа $A \rightarrow R$. При протекании этого процесса в РИС-Н достигается степень превращения $X_A = 0.8$. Сравните объемы реакторов РИС-Н и РИВ
- 14.В реакторах РИС-Н и РИВ протекает простой необратимый процесс типа $A + B \rightarrow R + S$. Концентрация реагентов в исходной смеси C0A = C0B = 1 кмоль/м³, константа скорости химической реакции K = 0,2 м³/кмоль·ч, степень превращения XA = 0,8, объемный расход реагентов составляет 0,1 м3/ч. Определить объемы реакторов РИС-Н и РИВ и сравнить эти объемы.
- 15.Для реакции $A+B \leftrightarrow C+Д$ выразить Кр через равновесную степень превращения X_A* , если состав исходной реакционной смеси в молях: A-a, $B-b, C-c, \mathcal{J}-d$ и (a+b+c+d)=1

- 16.Для реакции $A+2B\leftrightarrow C+Д$ выразить Кр через равновесную степень превращения X_A* , если состав исходной реакционной смеси в молях: A-a, B-b, C-c, J-d и (a+b+c+d)=1
- 17.Для реакции $A+1/2B \leftrightarrow C+Д$ выразить Кр через равновесную степень превращения X_A* , если состав исходной реакционной смеси в молях: A-а, B-b, C-c, Q-d и (a+b+c+d)=1
- 18.Подобрать оптимальный режим для гетерогенного процесса, протекающего во внешнедиффузионной области.
- 19.Подобрать оптимальный режим для гетерогенного процесса, протекающего в кинетической области.
- 20. Подобрать оптимальный режим для гетерогенного процесса, протекающего во внутридиффузионной области.

ЛИТЕРАТУРА

- 1. Багров Г.В., Белоусов А.М., Кравцова О.Ю. Общая химическая технология. Бийск, БТИ АлтГТУ, 2007. 106 с.
- 2. Бесков В.С. Общая химическая технология. Учебник для вузов. М.: Академкнига, 2005. 452 с.
- 3. Айнштейн В.Г. Процессы и аппараты химической технологии. Общий курс. В 2-х кн. М.: Бином. Лаборатория знаний. 2014. 1758 с.
- 4. Боровлев В.И. Органическая химия. Термины и основные реакции Учебное пособие. М.: Бином. Лаборатория знаний, 2010. 359 с.
- 5. Клюквина Е.Ю. Основы общей и неорганической химии. Учебное пособие. Оренбург: ФГБОУ ВПО Оренбургский государственный аграрный университет, 2011. 510 с.
- 6. Гарибян И.И. Общая и неорганическая химия. Учебное пособие для бакалавров. Ташкент: ТИТЛП, 2009. 310 с.
- 7. Гендин Д.В., Янчуковская Е.В. Аппараты химической технологии. Учебное пособие. Иркутск: Изд-во ИрГТУ, 2005. 40 с.
- 8. Денисов Ю.Н. Основные процессы и аппараты химической технологии. Часть 1. Теоретические основы процессов химической технологии. Бийск: БТИ АлтГТУ, 2008. 163 с.
- 9. Денисов Ю.Н. Основные процессы и аппараты химической технологии. Часть 2. Типовые процессы и аппараты химической технологии. Бийск: БТИ АлтГТУ, 2010. 156 с.

КРИТЕРИИ ОЦЕНКИ ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ ПО НАПРАВЛЕНИЮ ПОДГОТОВКИ 18.04.01 «ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ» (УРОВЕНЬ МАГИСТРАТУРЫ)

Приём 2018 года

Экзаменационный билет состоит из теоретических и практических задач, которые сгруппированы в три формы с разным уровнем сложности.

Уровень 1 содержит 3 задания. Выполнение задания предусматривает конкретный ответ на вопрос и оценивается следующим образом:

- 0 баллов ответ неверный или отсутствует;
- 15 баллов ответ недостаточно верный, или вместе с правильным ответом дан неправильный;
 - 20 баллов ответ верный.

Максимальная сумма баллов первого уровня – 60 баллов.

Уровень 2 содержит 2 теоретических задания. Теоретические задания предусматривают предоставление конкретного ответа на вопрос и оцениваются следующим образом:

- 0 баллов ответ неверный или отсутствует;
- 5 баллов задание выполнено не полностью, ответ содержит ошибки;
- 9 баллов задание выполнено полностью, ответ содержит незначительные ошибки;
 - 10 баллов задание выполнено полностью, без ошибок.

Максимальная сумма баллов второго уровня – 20 баллов.

Уровень 3 содержит 1 практическую задачу, требующую развернутого, обоснованного ответа с приведением расчетов, которая оценивается следующим образом:

- 0 баллов ответ неверный или отсутствует;
- 5 баллов задание выполнено не более чем на 30%, ответ содержит ошибки;
- 10 баллов задание выполнено не менее, чем на 50%, ответ содержит незначительные ошибки;
- 19 баллов задание выполнено не менее, чем на 75%, ответ содержит несущественные ошибки, которые не влияют на выводы;
 - 20 баллов задание выполнено полностью, без ошибок.

Максимальная сумма баллов третьего уровня – 20 баллов.

Абитуриент положительно сдал вступительное испытание, если количество баллов составляет 60 - 100 баллов.